Geometry: Section 3-8 Warm-up/notes
Find the slope:

1. $A(4,6) B(-8,12)$	2. $C(-9,14) D(-2,-7)$
3. $E(3,10), F(3,4)$	4. $\mathrm{G}(5,13) \mathrm{H}(-4,13)$
Slope-Intercept Formula: $y=m x+b$	Point-Slope Equation: $y-y_{1}=m\left(x-x_{1}\right)$
Ex 1: Write the equation of a line with a slope of -3 and a y-intercept of 5	Ex 2: Write an equation in slope intercept form given a slope of -4 and $P(-1,6)$
$Y=-3 x+5$	$\begin{aligned} & Y-6=-4(x--1) \\ & Y-6=-4(x+1) \\ & Y-6=-4 x-4 \\ & +\frac{6}{+6} \\ & Y=-4 x+2 \end{aligned}$
Ex 3 : Write an equation of line with a slope of $1 / 2$ with a y-intercept of 4 $Y=1 / 2 x+4$	Ex 4: Write an equation in slope intercept form given a slope of -3 and a point $P(-2,8)$ $\begin{aligned} & Y-8=-3(x--2) \\ & Y-8=-3(x+2) \\ & Y-8=-3 x-6 \\ & Y=-3 x+2 \end{aligned}$

Example 5: Write an equation that is parallel to a given equation $y=5 x-15$ yet going through $\mathrm{P}(-1,3)$ $\begin{aligned} & Y-3=5(x--1) \\ & Y-3=5 x+5 \\ & Y=5 x+8 \end{aligned}$	Ex 6: Write and equation that is perpendicular to this given equation $y=-1 / 3 x+7$ yet going through $P(3,4)$ $\begin{aligned} & Y-4=3(x-3) \\ & Y-4=3 X-9 \\ & Y=3 x-5 \end{aligned}$
Example 7: write an equation parallel to $y=1 / 2 x+10$ and going through $\mathrm{P}(8,12)$ $\begin{aligned} & Y-12=1 / 2(X-8) \\ & Y-12=1 / 2 X-4 \\ & Y=1 / 2 X+8 \end{aligned}$	Example 8: write an equation perpendicular to $y=1 / 4 x+12$ going through $\mathrm{P}(2,-6)$ $\begin{aligned} & Y--6=-4(x-2) \\ & Y+6=-4 x+8 \\ & Y=-4 x+2 \end{aligned}$
Example 9 Write an equation parallel to $\begin{aligned} & 3 x+4 y=12 \\ & -3 x \quad-3 x \\ & 4 y=-3 x+12 \\ & 44 \quad 4 \\ & Y=-3 / 4 x+3 \end{aligned}$ Parallel $y=-3 / 4 x+15$	Example 10: write an equation perpendicular to $\mathrm{y}=$ $6 x-18$ at the y intercept. $Y=-1 / 6 x-18$

$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { Example 11: write an equation } \\ \text { in slope intercept form that is } \\ \text { perpendicular to } y=-1 / 5 \\ \text { the } y \text {-int. }\end{array} \\ Y=5 x-4\end{array}\right\}$

