Perpendicular and Angle Bisector Theorems

Perpendicular Bisector Theorem

Given: $\overline{A B} \simeq \overline{C B}$ and $\overline{D B} \perp \overline{A C}$
Prove: $\overline{A D} \simeq \overline{D C}$

1. $\overline{A B} \simeq \overline{C B}$ and $\overline{D B} \perp \overline{A C}$	1. Given
2. $<D B A \simeq<D B C$	2. $\perp \rightarrow$ right angles $\rightarrow \simeq$
3. $\overline{D B} \simeq \overline{D B}$	2. Reflexive property
4. $\triangle A B D \simeq \triangle C B D$	3. SAS
5. $\overline{A D} \simeq \overline{C D}$	4. CPCTC

Converse of the Perpendicular Bisector Theorem

A B C
Given: $\overline{A D} \simeq \overline{C D}$
Prove: $\overline{A B} \simeq \overline{C B}$ and $\overline{D B} \perp \overline{A C}$

1. $\overline{A D} \simeq \overline{C D}$	1. Given
2. $\triangle A D C$ is isosceles	2. Def of Isosceles triangle
3. $\overline{A B} \simeq \overline{C B}$ and $\overline{D B} \perp \overline{A C}$	3. Isosceles Triangle Theorems

What do these theorems mean?
a) No matter where point D is located on the perpendicular bisector then it is the same distance from the endpoints A, C
b) Point D is always on the Perpendicular Bisector

Angle Bisector Theorem

Given: $<A D B \simeq<C D B$
Prove: $\overline{B A} \simeq \overline{B C}$

1. $<A D B \simeq<C D B$	1. Given
2. Draw $\overline{B C}$ and $\overline{B A}$ so that they are perpendicular to $\overline{D C}$ and $\overline{D A}$	2. Construction
3. $<B C D \simeq<B A D$	3. $\perp \rightarrow$ right angles $\rightarrow \simeq$
4. $\overline{D B} \simeq \overline{D B}$	4. Reflexive property

5. $\triangle B D A \simeq B C D$	5. AAS
6. $\overline{B A} \simeq \overline{B C}$	6. СРСTC

Converse of the Angle Bisector Theorem

Prove: $<B D C \simeq<B D A$

1. $\overline{B A} \simeq \overline{B C}$ and $\overline{B C} \perp \overline{B A}$	1. Given
2. $<C \simeq<A$	2. $\perp \rightarrow$ right angles $\rightarrow \simeq$
3. $\overline{B D} \simeq \overline{B D}$	3. Reflexive Property
4. $\Delta B C D \simeq \triangle B A D$	4. HL
$5 .<B D C \simeq<B D A$	5. CPCTC

What do these theorems mean?
a) No matter where you are at on the angle bisector you are equidistant from the sides of the angle
b) If an interior point is equidistant from the sides of an angle then it lies on the angle bisector.

Examples:

1. What is the length of $B C$?

$2 x+25=7 x$
$25=5 x$
$5=x$
$B C=7(5)=35=A B=2(5)+25$
2. What is the length of BA?

$$
\begin{aligned}
& 6 x+3=4 x+9 \\
& 2 x=6 \\
& X=3 \\
& A B=6(3)+3=21=B C=4(3)+9
\end{aligned}
$$

3. What is the length of AD?

$$
\begin{aligned}
& 4 x=6 x-10 \\
& -2 x=-10 \\
& X=5 \\
& A D=4(5)=20=D C=6(5)-10
\end{aligned}
$$

4. What is the length CD?

$3 x-1=5 x-7$
$-2 x=-6$
X $=3$
$D A=3(3)-1=8=D C=5(3)-7$

Reminder topic from chapter 3: Write an equation in point-slope form $\left(y-y_{1}\right)=m\left(x-x_{1}\right)$ for the perpendicular bisector to the given segment.

1. $M(-5,4) N(1,-2)$

Steps: a) Find the slope of the segment: $\underline{4--2=\underline{6}=-1}$

$$
\begin{array}{cc}
-5-1 & -6
\end{array}
$$

What is the perpendicular slope? 1
b) Find the midpoint of the segment.
$M\left(\frac{-5+1,4+-2}{2}\right)=(-2,1)$
c) Put steps 1 and 2 together to write the equation. Simplify if necessary.

$$
\begin{aligned}
& \left(y-y_{1}\right)=m\left(x-x_{1}\right) \\
& Y-1=1(x--2) \\
& Y-1=1(\mathrm{x}+2)
\end{aligned}
$$

2. $U(2,-6), V(4,0)$

Slope: $m=\frac{-6-0}{2-4}=\frac{-6}{-2}=3$
So the perpendicular slope is $-1 / 3$

Midpoint: $\left.\frac{(2+4}{2}, \frac{-6+0}{2}\right)=(3,-3)$
Equation: $y+3=-1 / 3(x-3)$

