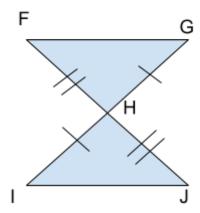
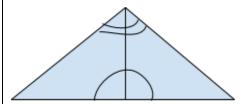

## Chapter 4 Replacement Quiz review


1. Why are the triangles congruent and why would <B is congruent to <C?</li>

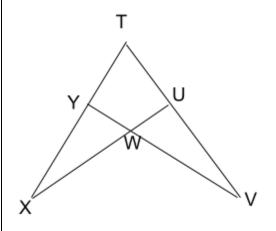


Since AD = AD that makes the third side congruent.


Therefore, the above triangles are congruent by SSS. That makes <B congruent to <C by CPCTC

2. Why are these triangles congruent? Write a correct congruence statement.

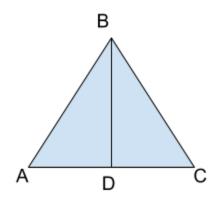



Since <FHG is congruent by <JHI by vertical angles, that makes the triangles congruent by SAS. A potential congruence statement is:  $\Delta GHF \cong IHJ$ 

3. How are these triangles congruent?



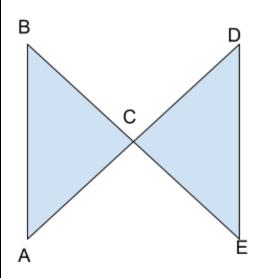
Since the line down the middle is congruent to both triangles by Reflexive Property, that makes the triangles congruent by ASA


4.  $\Delta TYV \simeq \Delta TUX$ ; What is their common angle or side?



Angle T

5. Given:  $\overline{AB} \simeq \overline{CB}$ ;  $\overline{BD}$  bisects < ABC


Prove:  $\overline{AD} \simeq \overline{CD}$ 

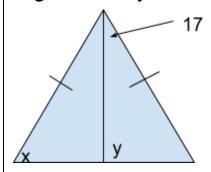


| $\frac{1.\overline{AB} \approx \overline{CB}}{BD \ bisects} < ABC$ | 1.Given                  |
|--------------------------------------------------------------------|--------------------------|
| 2. < <i>ABD</i> ≃< <i>CBD</i>                                      | 2.Def of angle bisector  |
| $3.\overline{BD} \simeq \overline{BD}$                             | 3.Reflexiv<br>e property |
| $4. \\ \Delta ABD \simeq \Delta CBD$                               | 4.SAS                    |
| $5.\overline{AD} \simeq \overline{CD}$                             | 5.CPCTC                  |

6. Given: C is the midpoint of

 $\overline{BE}$  and  $\overline{AB} \mid | \overline{DE}$ Prove:  $\overline{AC} \approx \overline{DC}$ 




| 1. $\overline{AB} \mid \mid \overline{DE}$<br>C is the midpoint of $\overline{BE}$ | Given                                            |
|------------------------------------------------------------------------------------|--------------------------------------------------|
| $2.\overline{BC} \simeq \overline{EC}$                                             | Def of a midpoint                                |
| 3. < A =< D<br>< B =< E                                                            | Alternate<br>Interior<br>angles are<br>congruent |
| 4. $\triangle ABC \cong \triangle DEC$                                             | AAS                                              |
| $5.\overline{AC} \simeq \overline{DC}$                                             | СРСТС                                            |

7. 
$$\Delta RST = \Delta UVW$$

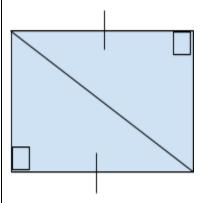
- a) Name all the corresponding parts.
- b) Rewrite the congruence statement in a different way that is also correct.

$$< R \approx < U, < S \approx < V$$
  
 $< T \approx < W; \overline{RS} \approx \overline{UV}$   
 $\overline{ST} \approx \overline{VW}, \overline{RT} \approx \overline{UW}$ 

9. What are the measures of angles x and y?



Since the given big triangle is isosceles the base angles will be congruent and then line down the middle is perpendicular to the base.


Therefore 
$$y = 90$$
 and  $90 - 17 = 73 = x$ 

8. If  $\triangle DEF \cong \triangle GHI$ , if m<E = 5x - 24 and m<H = 2x + 33 solve for x and determine the measure of <s E and H.

$$5x-24 = 2x + 33$$
  
 $3x = 57$   
 $X = 19$ 

So substitute and m<H= m<E 5(19) - 24 = 71 = 2(19) + 33

10. Why are these triangles congruent?



The line down the middle is congruent to both triangles by reflexive property. This line also acts as the hypotenuse for both triangles. Given is a side which happens to be a leg of a right triangle. Therefore triangles congruent by Hypotenuse-Leg or HL