Notes: Section 4.7 Overlapping triangles and Proof practice

• What seems like a weird polygon at first glance can easily be simplified when you pull apart the overlapping pieces into separate triangles.

Given: $\overline{AB} \approx \overline{DC}$ and $\overline{AB} \perp \overline{BC}$, $\overline{DC} \perp \overline{BC}$ Prove: $\triangle ABC \approx \triangle DCB$

Step 1: separate the polygon into two triangles and identify the common part.

What's the common part?

Step 2: solve the proof

Prove: $\triangle ABC \approx \triangle DCB$

1. $\overline{AB} \approx \overline{DC}$	1. Given
<mark>(side)</mark>	
2 . $\overline{AB} \perp \overline{BC}, \ \overline{DC} \perp \overline{BC}$	2. Given
3. < <i>ABC</i> ≃< <i>DCB</i> (angle)	3. $\bot \rightarrow right angles \rightarrow \simeq$
4. <u>BC</u> ≃ <u>CB</u> (side)	4. Reflexive Prop
5 . $\triangle ABC \simeq \triangle DCB$	5. SAS

What's the common part in this picture? TQ

Given: $< PQU \approx RTS$ and $< SRT \approx PUQ$ and $\overline{TU} \approx \overline{QR}$ Prove: $\overline{RS} \approx \overline{PU}$

1. $< PQU \approx RTS$ $< SRT \approx PUQ$ (2 sets of angles) $\overline{TU} \approx \overline{QR}$	1. Given
2. TU = QR	2. ≃ ↔ =
3. TU + TQ = TQ + QR	3. Add Prop of =
4. UQ = TU + TQ RT = TQ + QR	4. Segment Add Post
5. <u>UQ</u> ≃ <u>RT</u> (side)	5. = ↔≃
$6. \ \Delta P UQ \approx \Delta SRT$	6. ASA
7. $\overline{RS} \approx \overline{PU}$	7. CPCTC

What's the common part in this picture? EF

Prove: $\overline{AB} \approx \overline{CD}$

1. $\overline{BE} \perp \overline{AC}$; $\overline{DF} \perp \overline{AC}$	1. Given
$\overline{BE} \approx \overline{DF}$; (side)	
$\overline{AF} \simeq \overline{CE}$	

2. < <i>AEB</i> ≃< <i>CFD</i> (angle)	2. $\bot \rightarrow right angles \rightarrow \simeq$
3. AF = AE + EF CE = CF + EF	3. Segment Addition Postulate
4. AE + EF = CF + EF	4. Substitution
5. AE = CF	5. Subtraction Prop of =
6. <i>AE</i> ≃ <i>CF</i> (side)	6. =→≃
7. $\Delta AEB \simeq \Delta CFD$	7. SAS
8. $\overline{AB} \approx \overline{CD}$	8. CPCTC