Notes: Section 4.7 Overlapping triangles and Proof practice

- What seems like a weird polygon at first glance can easily be simplified when you pull apart the overlapping pieces into separate triangles.

Given: $\overline{A B} \simeq \overline{D C}$ and $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}$
Prove: $\triangle A B C \simeq \triangle D C B$

Step 1: separate the polygon into two triangles and identify the common part.

What's the common part?
Step 2: solve the proof
Prove: $\triangle A B C \simeq \triangle D C B$

1. $\overline{A B} \simeq \overline{D C}$ (side)	1. Given
2. $\overline{A B} \perp \overline{B C}, \overline{D C} \perp \overline{B C}$	2. Given
3. $<A B C \simeq<D C B$ (angle)	3. $\perp \rightarrow$ right angles $\rightarrow \simeq$
4. $\overline{B C} \simeq \overline{C B}$ (side)	4. Reflexive Prop
5. $\triangle A B C \simeq \triangle D C B$	5. SAS

What's the common part in this picture? TQ

Given: $<P Q U \simeq<R T S$ and $<S R T \cong<P U Q$ and

$$
\overline{T U} \simeq \overline{Q R}
$$

Prove: $\overline{R S} \simeq \overline{P U}$

What's the common part in this picture? EF

Prove: $\overline{A B} \simeq \overline{C D}$

1. $\overline{B E} \perp \overline{A C} ; \overline{D F} \perp \overline{A C}$
2. Given
$\overline{B E}=\overline{D F} ;$ (side)
$\overline{A F} \simeq \overline{C E}$

2. $<A E B \simeq<C F D$ (angle)	2. $\perp \rightarrow$ right angles $\rightarrow \simeq$
3. $\mathrm{AF}=\mathrm{AE}+\mathrm{EF}$ $\mathrm{CE}=\mathrm{CF}+\mathrm{EF}$	3. Segment Addition Postulate
4. $\mathrm{AE}+\mathrm{EF}=\mathrm{CF}+\mathrm{EF}$	4. Substitution
5. $\mathrm{AE}=\mathrm{CF}$	5. Subtraction Prop of $=$
6. $\overline{A E} \simeq \overline{C F}$ (side)	6. $=\rightarrow \simeq$
7. $\triangle A E B \simeq \triangle C F D$	7. SAS
8. $\overline{A B} \simeq \overline{C D}$	8. CPCTC

