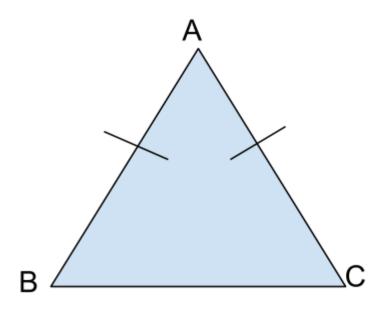
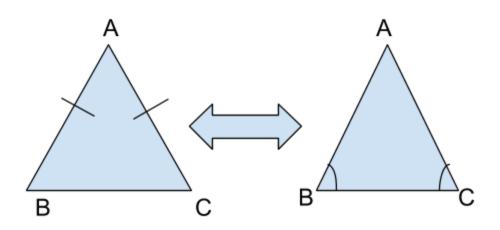
Isosceles and Equilateral Triangle Theorem Notes

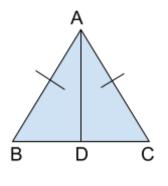


Vocabulary: < A: called the vertex angle, the congruent sides AB and AC are called the legs of the isosceles triangle and Side BC is called the base of the isosceles triangle. Angles B and C are the base angles. There are two theorems about Isosceles Triangles and both are related but each has a separate proof. For simplicity to remember the theorems the following biconditional statement can be used to remember both.



A triangle is isosceles if and only if the base angles are congruent.

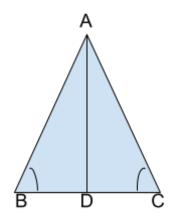
Proof that the base angles of an isosceles triangle are congruent. (Isosceles Triangle Theorem)



Given: $\overline{AB} \approx \overline{AC}$ Prove: $\langle B \approx \rangle C$

1. $\overline{AB} \approx \overline{AC}$	1. Given
2. Draw \overline{AD} such that \overline{AD} bisects < BAC	2. Construction
3. < DAB = < DAC	3. Def of bisect
4. $\overline{AD} \approx \overline{AD}$	4. Reflexive Prop
5. $\Delta DAB \simeq \Delta DAC$	5. SAS
6 . < <i>B</i> ≈< <i>C</i>	6. CPCTC

Proof of the Converse of the Isosceles Triangle Theorem (If the base angles are congruent the sides are congruent)



Given: $< B \approx < C$ Prove: $\overline{AB} \approx \overline{AC}$

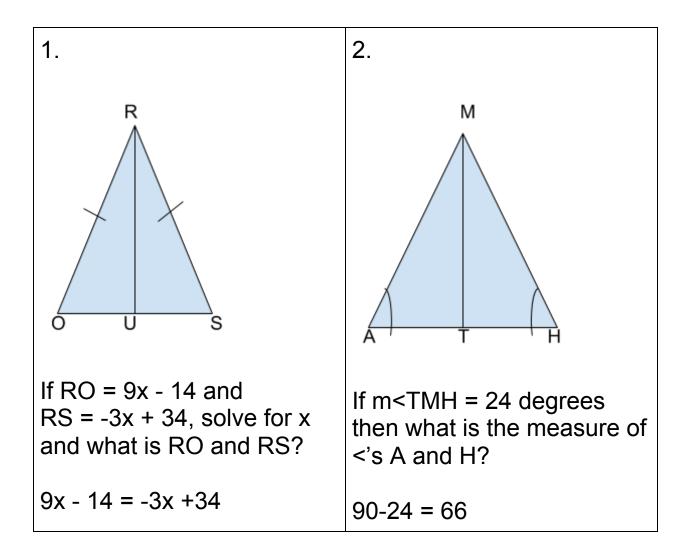
$1. < B \approx C$	1. Given
2. Draw \overline{AD} such that \overline{AD} bisects <bac< td=""><td>2. Construction</td></bac<>	2. Construction
$3. < DAB \simeq DAC$	3. Def of bisect
4. $\overline{AD} \approx \overline{AD}$	4. Reflexive prop
5. $\Delta BAD \simeq \Delta CAD$	5. AAS
6. $\overline{AB} \approx \overline{AC}$	6. CPCTC

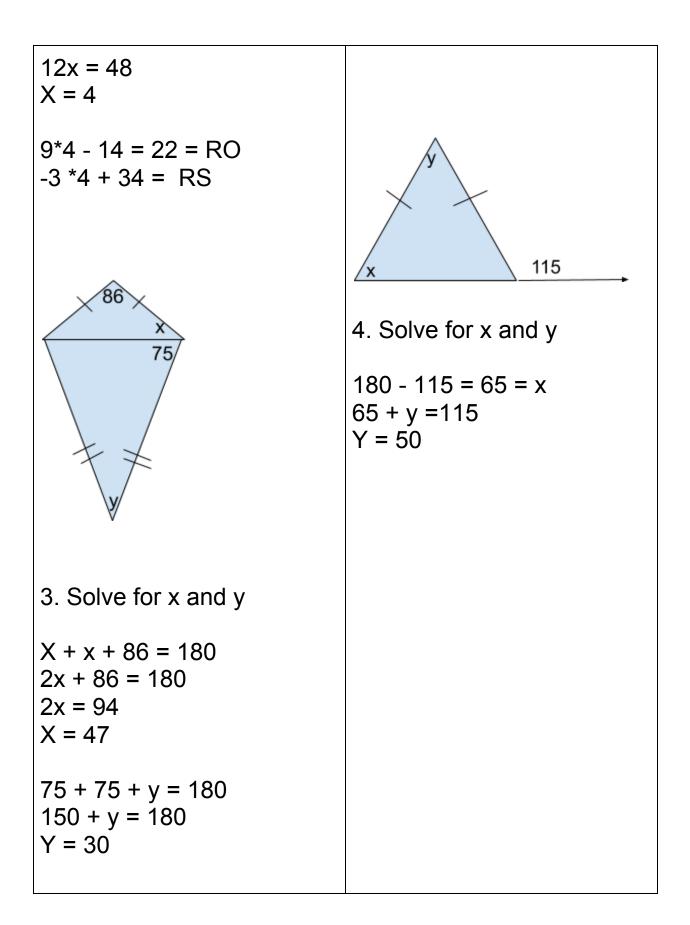
From these two theorems, what is also true?

a)Point D is a Midpoint.

b)<ADB and <ADC are **Right** angles.

So practical questions:





5. Suppose you have an exterior angle of an isosceles triangle that measures 130 degrees. What could be the interior angles?	6. Suppose the perimeter of an isosceles triangle is 63 with the base length is x and one of the legs is 5x -7. Solve for x and what is the length of each side?
	5x-7
X X 130	X + 5x - 7 + 5x - 7 = 63 11x - 14 = 63 11x = 77 X = 7
180-130 = 50 = x 50 + 50 + y = 180 100 + y = 180 Y = 80	Base = 7 5(7) - 7 = 28 = legs

