Corresponding Parts of Congruent Triangles are Congruent (CPCTC--Math XL uses CPOCTAC)

- Once you prove triangles are congruent by SSS, SAS, ASA or AAS you then can prove the other corresponding parts of the congruent triangles are congruent, too.

Example 1:

Given: $<A D B \simeq<C B D, \quad<A \simeq<C$
Prove: $\overline{A B} \simeq \overline{C D}$

1. $\angle A D B \simeq<C B D,<A \simeq<C$	1. Given
2. $\overline{B D} \simeq \overline{B D}$	2. Reflexive prop
3. $\triangle B A D \simeq \triangle D C B$	3. AAS
4. $\overline{A B} \simeq \overline{C D}$	4. CPCTC

Example 2:

Given: $<E G F$ and $<E G H$ are right angles, $\overline{G E}$ bisects $<F E H$ Prove: $<F \cong<H$

1. $<E G F$ and $<E G H$ are right angles	1.Given
2. $<E G F \simeq<E G H$	2. All right angles are congruent
3. $\overline{G E} \simeq \overline{G E}$	3. Reflexive prop
4. $\overline{G E}$ bisects $<F E H$	4. Given
5. $<F E H \simeq<H E G$	5. Def of bisect
6. $\triangle F E H \simeq \triangle H E G$	6. ASA
7. $<F \simeq<H$	7. CPCTC

Given: $\overline{J K}|\mid \overline{M N} ; \overline{J K} \simeq \overline{M N}$
Prove: $\overline{L K} \simeq \overline{L M}$

1. $\overline{J K} \\| \overline{M N}$	1. Given
2. $<K J L \simeq<M N L$ $<J K L$ 	2. Alt int angles theorem
3. $\overline{J K} \simeq \overline{M N}$	3. given
4. $\Delta L K J \simeq \Delta L M N$	4. ASA
$5 . \overline{L K} \simeq \overline{L M}$	5. CPCTC

Given: $<M N O \simeq L N O, \quad<L P O \simeq<M P O$
Prove: $\triangle N O L \simeq \triangle N O M$

1. $<M N O \simeq L N O, \quad<L P O \simeq<M P O$	1. Given
2. $\overline{N P} \simeq \overline{N P}$	2. reflexive
3. $\Delta N M P \simeq \triangle N L P$	3. ASA
4. $\overline{N M} \simeq \overline{N L}$	4. CPCTC
5. $\overline{N O} \simeq \overline{N O}$	5. reflexive
6. $\triangle N O L \simeq \triangle N O M$	6. SAS

